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Abstract—Typically, actuator dynamics are ignored when de-
signing flight control allocators for aircraft because the band-
widths of actuators are normally much larger than the fre-
quencies of the vehicle’s rigid body modes. Unfortunately,
this in not always the case, particularly when dealing with
non-aerodynamic surface actuators. Ignoring the interactions
between constrained control allocators and actuator dynamics
can have serious consequences. In this work, a method, which
post-processes the output of a control allocation algorithm, is
developed to compensate for actuator dynamics. The actua-
tors can have dynamics which are either first-order, second-
order with no zeros, or second-order with a single zero. The
method developed here solves for a gain, which multiplies
the commanded change in control effector setting as com-
puted by the control allocator. This approach is not computa-
tionally intensive and thus has the added benefit of being an
algorithm which can operate in real-time on a typical flight
computer. Likewise, this approach is applicable to both the
saturated and unsaturated control effector cases. The basic
premise of this method is to post-process the output of the
control allocation algorithm to overdrive the actuators so that
at the end of a sampling interval, the actual actuator positions
are equivalent to the desired actuator positions.
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1. INTRODUCTION

Control allocation algorithms are used to compute aircraft
control surface deflections which produce a desired set of mo-
ment or acceleration commands. A number of approaches
have been developed that ensure that the commands provided
to the effectors are physically realizable. These actuator com-
mand signals are feasible in the sense that they do not exceed
hardware rate and position limits. Buffington[1] and Bod-
son[2] developed methods which take into account rate and
position limits.

A review of the constrained control allocation literature
shows that the coupling effects that result from combin-
ing constrained control allocators and actuator dynamics has
largely been ignored, although some recent research has been
performed on directly including actuator dynamics in the con-
trol allocation problem[3], [4]. The underlying assumption of
most previous work is that actuators respond instantaneously
to commands. This assumption may at first seem justified be-
cause in practice, actuator dynamics are typically much faster
than the rigid body modes that are to be controlled. How-
ever, interactions between a constrained control allocator and
an actuator with linear dynamics can result in a system that
falls well short of its potential. As an example, a simula-
tion was run with a linear programming based control allo-
cation algorithm mixing four control effectors to obtain a de-
sired set of moments,ddes ∈ R3. In this simulation run,
the actuator dynamics for each control effector were set to

δ(s)
δcmd(s) = 5

s+5 and the commanded effector positions, as
computed by the control allocator, were used to initialize the
allocator at the next timestep. To illustrate the effects of con-
strained control allocator and actuator dynamics interactions,
consider Figures 1 and 2. The objective is to make the accel-
erations produced by the control effectors (Bδ) equal to the
commanded accelerations (ddes). Figure 1 shows that when
there are no actuator dynamics, the desired result is achieved,
namelyBδ = ddes. When actuator dynamics are included,
the results are as shown in Figure 2 where it is obvious that
Bδ 6= ddes. The goal of this work is to develop a scheme,
which compensates for the effects of actuator dynamics, so
that even when actuator dynamics are included, results like
those shown in Figure 1 are still obtained. As was shown
in the example above, the control allocator/actuator interac-
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Figure 1. Acceleration Commands and Accelerations
Produced by the Controls - No Actuator Dynamics.

Figure 2. Acceleration Commands and Accelerations
Produced by the Controls - Actuator Dynamics Present.

tion can yield control effector positions which produce signif-
icantly different accelerations than the commanded accelera-
tions. Bolling[5] has shown that the interaction between first-
order actuator dynamics and constrained control allocation
algorithms can be eliminated by overdriving the actuators. In
previous work, [6] the effects of the control allocator/actuator
interaction for first-order and second-order (with no zeros)
actuator dynamics has been taken into account. That work
is expanded here to include second-order actuator dynamics
with a single zero. Having the first-order, second-order, and
second-order with a zero cases defined, this work makes it
possible to create higher-order actuators as a combination of
these simpler forms.

In this work, results for the first-order and simple second-
order cases are provided to illustrate the effects of actua-

Figure 3. Control allocator and actuator interconnection.

tor dynamics on control system. Following this, the details
of the interaction between constrained control allocators and
second-order actuator dynamics with a zero are provided in
detail. Simulation results are presented for a four control sur-
face vehicle using a linear programming based control allo-
cation algorithm that takes into account control effector posi-
tion and rate limits. The results show that the desired control
effector positions can be obtained by post-processing the con-
trol allocation commands.

2. SYSTEM DEFINITION

Figure 3 shows the system to be analyzed in this work. Inputs
to the control allocation algorithm consist of a vector of de-
sired moment or acceleration commands,ddes ∈ Rn, and
a vector containing the current control surface deflections,
δ ∈ Rm. The output of the control allocator is the com-
manded control surface deflection vector,δcmd ∈ Rm. The
actuator dynamics respond toδcmd to produce the actual con-
trol deflections,δ. The individual actuators are assumed to
have uncoupled dynamics, hardware rate limits±δ̇max, and
position limitsδmin, δmax. In most control allocator imple-
mentations, rate limits are taken into account by converting
them into effective position limits at the end of the next sam-
pling period and constraining the effector commands to re-
spect the most restrictive of the rate or position limits, i.e.,

δ = min(δmax, δ + δ̇max∆t)
δ = max(δmin, δ − δ̇max∆t)

(1)

whereδ is the current location of the control effectors,δ, δ
are the most restrictive upper and lower bounds on the effec-
tors, respectively, and∆t is the sampling period of the digital
flight control system.

A few comments are in order regarding Figure 3 and the anal-
ysis described above. First, note that the instantaneous posi-
tion limit given by Equation 1 makes use of a sampled vector
of actuator position measurements to compute the maximum
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distance that the actuator can move in the next time instant.
This is in contrast to using the previous value of actuator com-
mand vector,δcmd, as is often done in simulation. The mo-
tivation for using actuator measurements is that when actua-
tor dynamics, disturbances, and uncertainties are taken into
account, the actuator command vector and the true actuator
positions will differ. This difference can cause a control allo-
cator to generate inappropriate actuator commands that do not
deliver the desired moments or accelerations. Thus, feeding
the measured actuator position vector to the control allocator
has the advantage of reducing uncertainty in the actuator po-
sition. It is important; however, to be aware of the effects of
using the measured actuator position vector.

3. ATTENUATION OF ZERO-ORDER-HOLD
I NPUTS FOR FIRST-ORDER AND

SECOND-ORDER (NO ZEROS) ACTUATOR
DYNAMICS

Referring to Figure 3, the desired situation would be for
δ = δcmd. However, actuator dynamics alter the command
signals so that, in general,δ 6= δcmd. For actuators with high
bandwidths relative to the rigid body modes, this is not a se-
rious concern. However, situations exist where the actuator
dynamics are not sufficiently fast and need to be taken into
account. In this section, the effects of first-order actuator dy-
namics and simple second-order (no zero) actuator dynamics
on the system shown in Figure 3 will be discussed. Let the
dynamics of a single actuator be represented by a continuous
time first-order transfer function of the form

δ(s)
δcmd(s)

=
a

s + a
(2)

The discrete time representation of the first-order actuator dy-
namics equation is given by

δ(tk+1) = Φδ(tk) + Γδcmd(tk) (3)

whereΦ M= e−a∆t, Γ M= 1 − e−a∆t, and it has been assumed
that the input to the actuator dynamics,δcmd(tk), is held con-
stant over each sampling period. The command to the actua-
tor can be written as

δcmd(tk) = ∆δcmdCA(tk) + δ(tk) (4)

where the commanded incremental change in actuator po-
sition over one timestep is defined by∆δcmdCA(tk) M=
δcmdCA

(tk)−δ(tk) and whereδcmdCA
(tk) is the actuator po-

sition command from the control allocator. Since the effec-
tor commands are held constant over each sampling period,
∆δcmdCA(tk) will appear to the actuators to be a step com-
mand from the measured position. Recall thatδcmdCA

(tk) is
calculated by the control allocator based upon the assumption
that the effector will respond instantaneously to commands.
Substituting Equation 4 into Equation 3 yields

δ(tk+1) = Φδ(tk) + Γ [∆δcmdCA
(tk) + δ(tk)] (5)

SinceΓ < 1, the incremental command signal from the con-
trol allocation algorithm,∆δcmdCA(tk) is attenuated by the

Figure 4. Block diagram of command increment
compensation.

actuator dynamics, thusδ(tk+1) 6= δcmdCA
(tk). The objec-

tive is to find a gain,M , that modifies the output of the con-
trol allocation algorithm such thatδ(tk+1) = δcmdCA(tk) =
∆δcmdCA

(tk) + δ(tk). Hence,

δ(tk+1) = Φδ(tk) + Γ [M∆δcmdCA(tk) + δ(tk)] (6)

and, solving forM yields

M =
1
Γ

(7)

Thus the actuator command signal must be modified such that

δ̃cmd(tk) = M∆δcmdCA
(tk) + δ(tk)

=
1
Γ

∆δcmdCA(tk) + δ(tk)
(8)

Replacingδcmd(tk) in Equation 3 withδ̃cmd(tk) from Equa-
tion 8 yields

δ(tk+1) = Φδ(tk) + Γδ̃cmd(tk)

= Φδ(tk) + Γ
[

1
Γ

∆δcmdCA
(tk) + δ(tk)

]
(9)

which yields the desired actuator position.

SinceΓ can be computed from the known quantitiesa and
∆t, one can compensate for command increment attenuation
using Equation 8. For a bank of decoupled first-order actua-
tors with nominal bandwidths ofai, corresponding values of
Γi can be computed usingΓi = (1 − e−a

i
∆t). The com-

mand increment compensation can then be implemented in
discrete time as shown in Figure 4. In Figure 4, the dashed
lines are for compensation for second-order actuator dynam-
ics, as will be discussed shortly, and therefore, are not part of
the first-order actuator dynamics compensation scheme. Note
that, for multiple actuators,M in Figure 4 is a diagonal matrix
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with the entries on the main diagonal beingΓ1, Γ2, · · · , Γm,
where the subscript m is defined as the number of control ef-
fectors. Hence, the magnitude of the control allocation com-
mand increment is modified to counteract the attenuation that
results from the interaction between first-order actuator dy-
namics and the control allocator.

With the knowledge gained from the first-order actuator dy-
namics case, it is now possible to extend the previous results
to second-order actuator dynamics. Let the second-order ac-
tuator dynamics be represented by the general equation

δ(s)
δcmd(s)

=
k

s2 + 2ζωns + ω2
n

(10)

which, in state-space form, becomes

[
δ̇(t)
δ̈(t)

]
=

[
0 1

−ω2
n −2ζωn

] [
δ(t)
δ̇(t)

]

+
[

0
k

]
δcmd(t)

= A
[

δ(t)
δ̇(t)

]
+ Bδcmd(t)

(11)

δ(t) =
[

1 0
] [

δ(t)
δ̇(t)

]
= C

[
δ(t)
δ̇(t)

]
(12)

Using Equations 11 and 12, the discrete-time solution to
the second-order actuator dynamics differential equation be-
comes

δ(tk+1) =
[

Φ1,1 Φ1,2

] [
δ(tk)
δ̇(tk)

]

+ δcmd(tk)
∫ tk+1

tk

kΦ1,2(tk+1 − τ)dτ

(13)

where

Φ = eA(tk+1−tk) =
[

Φ1,1 Φ1,2

Φ2,1 Φ2,2

]
(14)

is the state transition matrix. SinceA is constant, the state
transition matrix depends on the time difference,∆t =
tk+1−tk, and the explicit dependence on time has been elim-
inated. Performing the operations required in Equations 13
and 14 produces

δ(tk+1) = C1δ(tk) + C2δ̇(tk) + C3δcmd(tk) (15)

where

C1 =
ωn

ωd
eσ∆tsin

[
ωd∆t + arctan

(
ωd

−σ

)]

C2 =
eσ∆t

ωd
sin [ωd∆t]

C3 =
k

ωd

[
ωd + eσ∆t [σsin(ωd∆t)− ωdcos(ωd∆t)]

ω2
n

]

(16)

ωd = ωn

√
1− ζ2 andσ = −ζωn. Substituting Equation 4

into Equation 15 produces

δ(tk+1) = C1δ(tk) + C2δ̇(tk) + C3 [∆δcmdCA
(tk) + δ(tk)]

(17)
The objective is to find a gainM that will modify
∆δcmdCA

(tk) in such a way thatδ(tk+1) = δcmdCA
(tk).

Hence, it is desired to findM such that

∆δcmdCA
(tk) + δ(tk) = C1δ(tk) + C2δ̇(tk)+

C3 [M∆δcmdCA
(tk) + δ(tk)]

(18)

Solving forM gives

M =
∆δcmdCA

(tk) + (1− C3 − C1)δ(tk)− C2δ̇(tk)
C3∆δcmdCA

(tk)
(19)

Clearly, unlike the simple first-order case, this compensation
is more complex. In fact, this requires not only the position
of the control effector, but also the rate of change of the con-
trol effector. In practice, an estimator would be designed (for
example, a Kalman filter) to estimateδ̇(tk). Referring to Fig-
ure 4, for a system with more than one actuator,M would be
a diagonal matrix with entries along the main diagonal be-
ing M1,M2, · · · , Mm. Here,Mi would be computed using
Equation 19 andωni , ζi corresponding to theith actuator.

4. ATTENUATION OF ZERO-ORDER-HOLD
I NPUTS FOR SECOND-ORDER ACTUATOR

DYNAMICS W ITH A SINGLE ZERO

The results of the previous section are now extended to the
case of second-order actuator dynamics with a single zero.
Let the actuator dynamics be represented by

δ(s)
δcmd(s)

=
k(s + a)

s2 + 2ζωns + ω2
n

(20)

In this case, it is easily seen that Equation 20 contains deriva-
tives of the input signal. In order to eliminateδ̇cmd(t), intro-
duce an intermediate variable,z(s), so that

δ(s)
z(s)

z(s)
δcmd(s)

=
k(s + a)

s2 + 2ζωns + ω2
n

(21)

and let
z(s)

δcmd(s)
=

1
s2 + 2ζωns + ω2

n

(22)

and
δ(s)
z(s)

= k(s + a) (23)

Then, it is easily seen that Equation 22, in state-space form,
becomes

[
ż(t)
z̈(t)

]
=

[
0 1

−ω2
n −2ζωn

] [
z(t)
ż(t)

]

+
[

0
1

]
δcmd(t)

= A
[

z(t)
ż(t)

]
+ Bδcmd(t)

(24)
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From Equation 23, the output equation becomes

δ(t) = kaz(t)+kż(t) =
[

ka k
] [

z(t)
ż(t)

]
= C

[
z(t)
ż(t)

]

(25)
Equations 24 and 25 describe the second-order actuator dy-
namics.

Using Equations 24 and 25, the discrete-time solution to
the second-order actuator dynamics differential equation be-
comes

δ(tk+1) = (kaΦ1,1 + kΦ2,1) z(tk)
+ (kaΦ1,2 + kΦ2,2) ż(tk)+

δcmd(tk)
∫ tk+1

tk

kaΦ1,2(tk+1 − τ)dτ+

δcmd(tk)
∫ tk+1

tk

kΦ2,2(tk+1 − τ)dτ

(26)

whereΦ was defined in Equation 14. Equation 26 can be
written as:

δ(tk+1) = D1z(tk) + D2ż(tk) + δcmd(tk) [D3 + D4] (27)

so that
D1 = kaΦ1,1 + kΦ2,1

D2 = kaΦ1,2 + kΦ2,2

D3 =
∫ tk+1

tk
kaΦ1,2(tk+1 − τ)dτ

D4 =
∫ tk+1

tk
kΦ2,2(tk+1 − τ)dτ

(28)

It is now required to evaluateΦ and perform the math re-
quired in Equation 28. By computing the necessary inverse
Laplace transforms, it is found that

Φ1,1 = eσ∆t

[
ζ√

1−ζ2
sin(ωd∆t) + cos(ωd∆t)

]

Φ1,2 = eσ∆t

ωd
sin(ωd∆t)

Φ2,1 = −ωn2
eσ∆t

ωd
sin(ωd∆t)

Φ2,2 = eσ∆t

[
cos(ωd∆t)− ζ√

1−ζ2
sin(ωd∆t)

]
(29)

whereωd and ζ were defined after Equation 16 and∆t =
tk+1− tk. Using Equation 28,D1, D2, D3, andD4 are found
to be

D1 = kaeσ∆t

[
ζ√

1− ζ2
sin(ωd∆t) + cos(ωd∆t)

]

− kωn2
eσ∆t

ωd
sin(ωd∆t)

D2 =
kaeσ∆t

ωd
sin(ωd∆t)

+ keσ∆t

[
cos(ωd∆t)− ζ√

1− ζ2
sin(ωd∆t)

]

D3 = ka
ωdω2

n

[
ωd + eσ∆t {σsin(ωd∆t)− ωdcos(ωd∆t)}]

D4 = k
ω2

n

[−σ + eσ∆t {σcos(ωd∆t) + ωdsin(ωd∆t)}] +
kζ

ωdωn

[−ωd − eσ∆t {σsin(ωd∆t)− ωdcos(ωd∆t)}]
(30)

The objective is to find a gainM that will modify
∆δcmdCA

(tk) in such a way thatδ(tk+1) = δcmdCA
(tk).

Hence, it is desired to findM such that

∆δcmdCA
(tk) + δ(tk) = D1z(tk) + D2ż(tk)

+ (D3 + D4) [M∆δcmdCA
(tk) + δ(tk)]

(31)

Solving forM gives

M =

∆δcmdCA
(tk) + (1−D3 −D4)δ(tk)

−D1z(tk)−D2ż(tk)
(D3 + D4)∆δcmdCA

(tk)
(32)

In this case, it can be seen that not only is the actual actu-
ator position needed, so are the intermediate variablesz(tk)
and ż(tk). In practice, an estimator (for example, a Kalman
filter) would be designed to providez(tk) and ż(tk). As
with the first-order and simple second-order cases, for a sys-
tem with more than one actuator,M in Figure 4 would be
a diagonal matrix with entries along the main diagonal be-
ing M1,M2, · · · , Mm. Here,Mi would be computed using
Equation 32 andωni

, ζi corresponding to theith actuator.

5. SIMULATION RESULTS

In this section, results from a simulation of the system dis-
played in Figure 4 will be shown. A rate and position con-
strained linear programming based control allocator will be
utilized in this work. In this case, the control allocation algo-
rithm’s objective, referring to Figure 3, is to findδcmd such
that

ddes = Bδcmd (33)

whereB is the control effectiveness matrix andddes is typi-
cally a set of moment or acceleration commands for the roll,
pitch, and yaw axes. Although, if feasible, the control allo-
cator will be able to find aδcmd such that Equation 33 holds,
the real test is to determine what happens after the actuator
dynamics operate onδcmd. Hence, the overall system goal is
to achieveδ such that

ddes = Bδ (34)

Equation 34 is the metric upon which the quality of results
will be judged. In this example, four control effectors are
present and the control effectiveness matrix is fixed at

B =



−0.4 0.4 −0.1 0.1
−0.1 −0.1 −0.6 −0.6
−0.1 0.1 −0.1 0.1


 (35)

where the elements ofB have units of(rad/sec2)/deg.
Since there are more control effectors (4) than axes to control
(3), a control mixed or allocator must be used. In this work, a
flight-tested linear programming based control allocation al-
gorithm with rate and position limiting will be used [2], [?].
It is important to note, however, that any control allocation
method could be used.
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In the following simulations, a mixture of actuator dynamics
will be used. Specifically, the dynamics of each actuator are

δ1(s)
δcmd1 (s) = 2.5(s+10)

s2+7.071s+25
δ2(s)

δcmd2 (s) = 2.5(s+10)
s2+7.071s+25

δ3(s)
δcmd3 (s) = 49

s2+7s+49
δ4(s)

δcmd4 (s) = 5
s+5

(36)

which givesζ =
√

2
2 , ωn = 5, k = 2.5 for the second-order

with zero cases,ζ = 0.5, ωn = 7, k = 49 for the simple
second-order case, anda = 10. Each actuator is rate and
position limited by the following values

δmin =
[ −1.5 −1.5 −1.5 −1.5

]
(deg)

δmax =
[

0.4 1.5 1.5 1.5
]
(deg)

δ̇maxCA
=

[
10 10 10 3

] (
deg
sec

) (37)

These limits were selected so that at least one position and
one rate limit were in effect at some time during the sim-
ulation. This was done to show that the method developed
in this work is applicable when control effectors are satu-
rated. As will be shown, when compensation is used, actua-
tor 1 becomes upper position limited and actuator 4 becomes
rate limited as the frequency of the commands increases.
The command signals,ddes, consist of chirps of magnitude
0.15, 0.3, and0.15 rad

sec2 in the roll, pitch, and yaw channels
and where the frequency ranged from0.5 − 2 Hz as a linear
function of time over a10 sec time interval.

Simulation runs were performed with and without compen-
sation for magnitude attenuation due to actuator dynamics.
Ideal conditions are when the actuator dynamics can be rep-
resented by δ(s)

δcmd(s) = 1. If sufficient control authority and
ideal conditions exist, then the control system would achieve
ddes = Bδ, which is the best possible performance. Fig-
ures 5 and 6 showddes andBδ without and with the mag-
nitude compensation described in Equations 7, 19, and 32
applied. Clearly, when the magnitude compensation is not
used (Figure 5),ddes 6= Bδ, and a large error exists between
these two quantities. When magnitude compensation is used
(Figure 6), however,ddes

∼= Bδ and near ideal performance
is achieved.

Figures 7 and 8 show the control effector commands,
δcmdCA

, and actual deflections,δ, when magnitude compen-
sation is not utilized. As expected, the actual deflections are
considerably different than the commanded deflections and
this directly translates to the deviations betweenddes andBδ
as shown in Figure 5. On the other hand, Figures 9 and 10
display the control effector commands,δcmdCA

, and actual
deflections,δ, when magnitude compensation is used. In this
case, the actual deflections are nearly equal to the commands
and as a result,ddes

∼= Bδ. Notice that control effector 1 is
upper position limited and control effector 4 is rate limited
for the last few seconds of the simulation run. Thus, using

Figure 5. Commanded (ddes) and simulated (Bδ) angular
accelerations

(
rad
sec2

)
- Compensation OFF.

Figure 6. Commanded (ddes) and simulated (Bδ) angular
accelerations

(
rad
sec2

)
- Compensation ON.

the simple gain adjustment described in Equation 19 results in
the actual control deflections being equal to the commanded
control deflections. It is apparent that adjusting the control
effector command increments can help to mitigate adverse in-
teractions between discrete time implementations of control
allocation algorithms and actuator dynamics.

6. CONCLUSIONS

Interactions between constrained control allocation algo-
rithms and the dynamics of actuators can result in degraded
performance if not carefully implemented. It was shown that
the control effector commands, from a control allocation al-
gorithm, are attenuated by actuator dynamics. One method,
which can be used to extract maximum performance from
such a system, is to modify the control effector command
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Figure 7. Control Effector 1 and 2 Positions -
Compensation OFF.

Figure 8. Control Effector 3 and 4 Positions -
Compensation OFF.

increments from the control allocator. The gains used to
modify the commands were computed for first-order, simple
second-order, and second-order with a zero actuator dynam-
ics. Simulation results show that significant improvements
can be achieved by using this method to post-process the
commands from the control allocation algorithm. Benefits
of this method are that the control allocation algorithm need
not be modified, it requires minimal additional computations,
and it is valid for saturated and unsaturated control effectors.
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